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Outline: 

 Parameter of interest (Treatment effect difference) 

 From two-sample to one-sample 

 Estimation procedures under different assumptions 

 Traditional clinical trials: From 1 Center to K Centers 

 Models for treatment effect:  Fixed effect model; Continuous Random Effects 

Model and Discrete Random Effects Model 

 Consistency and Inconsistency 

 Drop-the-min data analysis in MRCT 
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Comparisons of two means T versus C 

Parameter of interest  = T - C. 

In the following, we will simply this two-sample problem to a one-

sample problem.  

XT: patient response from T 

XC: patient response from C 

Suppose there are equal number of patients from T and C (i.e., NT = NC = 

n), then there are n “pairs” of measures {Xi = XTi – XCi,  1, 2,…, n}. The 

treatment difference  = T − C can be estimated by T CX   X .  
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Data set = {XT1, XT2,….,XTn; XC1, …,XCn} {X1, X2, …,Xn} 

The mathematics behind the one-sample case is much easier to 

deal with (assuming NT = NC) than those for the two-samples. 

What if NT ≠ NC ? 

The insights learned from the one-sample case can be extended to 

the two-sample case with minimal modifications, but the proofs for 

the two-sample case involve the Brownian Motion Process.   
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Different ways to estimate  --- Parameter of interest  (treatment effect) 

In general, we always take a weighted average approach. 

1 2 3

1 1 2 2

Suppose that there are 3 unbiased estimates of , say ,  ,  .

What is a reasonable way to estimate the "overall" effect ?

In general, we use a "weighted" approach.  

 = W  + W

   



   3 3 1 2 3 +W  , W +W +W 1.    
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1 1 2 2 3 3

Sample size weights --- {W  = N / }.

Suppose there are 3 estimates of , say

 7 (N = ) ,  8 ( N = ),  9 (N = ).

The weights are100/600=1/6; 2/6 and 3/6, 

and the estimate of t

100 200 30

h

0

e 

i i jN



    



overall effect is 7*1/6 + 8*2/6+9*3/6 = 8.333.

 

 

Equal weights, mean effect=  (7+8+9)/3 = 8.  

Which one do you like better?
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1 2 3

2 2 2

1 2 3

In statistics, we have a "well-established approach" to estimate .

Unconditionally, suppose ,  ,  and  are "unbised" estimates of  

with variances γ , γ  and γ . Then the "best" overal



   

3 2 2
i i1 i

i3 22
jj1

l estimate of θ is the 

θ /γ 1/γ
reciprocal variance estimate   =    {that is, W  = }

(1/γ )1/γ

which puts more weights on "more accurate" estimates. 





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1 2 31 2 3

2

1

Next, we will introduce another factor which modifies the sample size weights.

The 3 estimates of  are  7 (N =100) ,  8 (N  = 200),  9 (N  = 300).

Within group variances (different) are:  =

   



  

2 2

2 3

2

1 1

2

2 2

3

 3;   2.6 and  2.1.

7 is based on 100 patients with variance   = 3/100 = 0.03.

=8 is based on 200 patients with variance  =  2.6/200 = 0.013; 

=9 is based on 300 patients with v

 

 

 



 



2

3

23

i1

23

j1

ariance  = = 2.1 /300 = 0.007.  

The weightes are {0.1317, 0.3039, 0.5644} and 

/
the reciprocal variance estimate  =  = 8.4327.

1/

This is slightly different from the sample size we

i



 







ighted average 8.333.



  

BASS 2015_LAN Page 9 

 

For this specific example, the “sample size weights” and “reciprocal of 

variance weights” provide similar results.  This is true in general unless 

the variance estimates {
2

i } are very different.  

 

In the second half of this talk on MRCT (Multiregional Clinical Trials), 

we will show you that under the Random Effects Models, the reciprocal 

variance weights and sample size weights could be VERY DIFFERENT. 
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 A group sequential design requires larger sample size than a fixed 

(amount of information) design. We will restrict our discussion to the 

design and data analysis of non-sequential clinical trials in this talk. 



  

BASS 2015_LAN Page 11 

 

Start with a single center study. 

Consider a sequence of samples X1, X2,…,Xn,… ; iid with mean  and 

variance 2. In the large sample case, the variance can be estimated 

consistently by the sampled variance and mathematically, we treat 2 as 

known.  ( is fixed, unknown) 

Te test H0:  = 0 versus HA:  > 0, we usually “choose” a simple 

alternative  = 1>0 and the test statistic is 

N

i1
X X

Z =  =  with rejection region Z  z ( 1.96).
N 1/N


 

 


 



  

BASS 2015_LAN Page 12 

 

To solve for sample size N to reach power 1-, we choose N from 

the equation EZ = z + z under  = 1, or,  

2 21

0.025 0.15

N = ( ) ( ) .                  (Equation 1)

For one-sided  = 0.025 and 85% power, 

 =  = 1.96+1.04 = 3. 

z z

z z z z

 

 









   

What if we have K centers? 

Under a fixed effect model, the means 1=2=...= K = . 

Let the sample sizes for the K centers be {N1, N2,…,NK} with total 

sample size N = Nk.  
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Then the test statistic is still 

 

N

i1
X X

Z =  =  with rejection region Z  z .
N 1/N


 




 

And the total sample size N is computed by 

2 21N = ( ) ( ) .                  (Equation 1)z z 






 

The overall mean is estimated by 

1 2 K1 1 K 1 1 K

K

kkk= k1 k

X  (N X +N X +...+N X ) / (N +N +...+N )

= W X  whe W =Nre ./N




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I had numerous discussions with colleagues on clinical trial design 

and data analysis of “Multi-Center” trials. It is quite common that 

the observed data did not support the fixed effect model 

assumption.  

What is the alternative:  Use a different model! 

There are two random effects models: 

1. Continuous Random Effects Model (CREM), and 

2. Discrete Random Effects Model (DREM), 

CREM = DerSimonian-Laird (1986), originally introduced for 

meta-analysis.   
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 CREM (originally for meta-analysis) was also considered by 

many statisticians and used in clinical trial data analysis.  Many of 

my colleagues were NOT happy with the statistical characteristics 

of CREM. They would rather use the fixed effect model to design 

trials and analyze data. 

    

In this presentation, I will elaborate on the “undesirable” (??) 

characteristics of CREM and suggest another random effects 

model (DREM) as an alternative option. 
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What is CREM? 

Suppose we have K centers.  From Center k, k = 1,2,…,K; 

responses  Xkj  N(k, k
2
).  To simplify notations, we assume all 

the within center variances are the same; i.e., k
2
 

2
.)  

Denote the sample mean of the k-th center as k X . 

Under CREM, each of the center effects k is random  N(, 
2
).  

The variance component 
2 
is called the between-center variance.   
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2

2 2

Conditionally, as an estimate of ,

 is normal with mean  and variance / .

Unconditionally, as an estimate of the overall effect ,

 is normal with mean  and variance /  + .

Denote the rec

k

k k k

k k

X N

X N



 



  

2 2 1iprocal variance ( /  + )  as V . k kN  
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Reciprocal variance estimate: 

The overall mean is estimated by 

K Kk
k kKk=1 k=1 k

jj=1

K

k k jj=1

V
 = ( ) X W X

V

where the weights are {W V / V }.

 



 


  

1K

k
1

It can be shown that Var ( ) = 1/ [Var (X )] .


  

Note that the variance component 
2 
contributes to the weights. 
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2

k

2
2

k

2
1 2 K

Fixed: Var(X ) =  

CREM: Var(X ) =  +  = w/i variation + between variation.

When   is very small, we expect the center means {X ,X ,...,X }

have small dispersion, and the statistical inferenc

k

k

N

N








es from the "fixed effect"

approach will be similar to those of the CREM approach.

 

For multi-regional trials, do we expect 
2
 to be “very small”? 



  

BASS 2015_LAN Page 20 

 

 

2
k k

k
1

2
2 2

k

2
kAs N ,  In the large sample case,

all

Var(X )

 the variances {Var(X )} are   and all {W

 =  + ,  assume  is NOT negligiable

} are  1/K.

In other word

.

Var(X )  . 

s,  ( X ) / K.

In general

k

k

K

k

N






 







 

 

k

, CREM pushed the sample size weights 

{N /N}  {1/K}.
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2

k

2
kAs N ,   which does not go to zero.

In the large sample case, Var(X)  /K does not go to 0.

The power of the Z-test will not go to 1 even when all N .

(K   is also re

Var(X

quired for pow

 

er 

) k













 1.)  

Remember that CREM was introduced for meta-analysis.
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Examples: 2/2 = R, or 2 = R 2. Sample sizes =(200, 50, 300). 

In the following, we consider various values of R: 

Sample size weights are……………     (.3636, .0909, .5454) 

When R = 0.0005, CREM weights are  (.3699, .0993, .5308) 

When R = 0.005,   CREM weights are   (.3846, .1538, .4615) 

When R = 0.05,     CREM weights are   (.3550, .2789, .3661) 

When R = 1,          CREM weights are    (.3348, .3299, .3354) 

 

When R becomes larger, the weight W2 increases  

from 0.0909 to 0.3299  1/3.
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Another example: 
2
/

2
 = R, or 

2
= R 

2
. Fix R = .05,  

Consider different sample sizes =  (200, 50, 300). 

Sample size weights             (.3636, .0909, .5454) 

CREM weights :        (.3550, .2789, .3661) 

Sample sizes                            (1000, 250, 1500). 

CREM weights:        (.3389, .3200, .3411) 

 

k

In general, CREM pushed the sample size weights 

{N /N}  {1/K}.  
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Another problem we experienced with CREM:  

Consider a trial with center sizes {20, 30, 50, 400, 500}. 

Pooling the first 3 centers into 1 center will seriously affect the 

estimate of the overall effect. 
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
2
/

2
 = R, or 

2
= R 

2
.  Fix R = .05. 

Sample sizes = (20, 30, 50, 400, 500) 

Sample size weights: (0.02, 0.03, 0.05, 0.4, 0.5) 

CREM weights =     (.134, .161, .192, .255, .258)  1/5 

 

Pool the first three centers into one. 

Sample sizes = (100, 400, 500) 

Sample size weights = (0.1, 0.4, 0.5) 

CREM weights = (.303, .347, .350)  1/3 
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Another Random Effects Approach 

Discrete Random Effects Model (DREM) 

The population  = 1 + 2 + … + K 

P[k] = Wk , k Wk =1. Regional effects {k} are constants. 

A random patient’s response X =  + ,  

where   N(0, 
2
) and  is a discrete distribution with 

P[=k]=Wk.  The mean and variance of  are: 

E = Wkk = , and  

Var() = Wk(k - )
2
 = Wkk

2
 - 

2
 = 

2
. 
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In other words, conditional on a patient being taken from k, the 

response X is normal with mean E(X|k) = k and variance 
2
. 

Unconditionally, EX = E(+) = Wk k =  and Var(X)= 
2 
+ 

2
.  

 

Note that unconditionally, X is a mixture of normal variables and 

does NOT follow a normal distribution. 

2
2

k

k

2 2

k

k

σ
Also note that,  under CREM, Var(X )=  + .

N

σ + τ
Under DREM , Var(X ) = .

N


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In practice, the weights {Wk } are estimated by the sample 

proportions {wk=Nk/N}.  In the large sample case, {wk=Nk/N} are 

consistent estimates of {Wk }.  The overall sample mean  

2 2
1

1

2 2

0

 =  =  is approximately N( , ) by CLT.

To test H : 0 versus H : 0, the statistical test is

Z =  with rejection region Z  z .
/

Note that under the fixed effect model,

( )

 

K

Kkk k
kkk

A

N X
X w X

N N

X

N


 


 

 







 







2
F F

2

  N( , ) and the statistical 

test is Z  =  with rejection region Z   z .
/

X
N

X

N








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Variance components 
2
 and 

2
 

Consider the pooled sample responses from the K regions together 

{X11, X12, … Xk1, Xk2, …, XK1, XK2…} . 

2

2
2 kki
k

k

2 2

k

We may estimate  from the K regions with 

(X  - X )
 = , then use the weighted average to get

N -1

 = [ ( 1) ]/(N - K).

In data analysis, the fixed effect approach "ignores" the component

kN





 





2 2

 

 since, under the fixed effect model,  = 0. (Is this appropriate?) 
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2 2 2

kjk

2 2

k

j

2 2 2 2

As an alternative, we may use the following formulas to estimate 

the variance components of varianc

 = [ ( 1

e for X :

+ = (X  X) / (N 1).

.) ]/(N K

.

- )

+

kN 

 

   











 


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(Stratified analysis) 

  

Consider the following parametrization: 

Express the treatment effect for Region k as 

k =  + k, k = 1,…, K, with k = 0. 

Then (k)/K = [( + k)]/K = .  

The overall treatment effect  = the unweighted average of {k }. 
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What if the within group variances are not the same? 

It can be shown that if the within group variances are {k
2
}, then  

 

 

 

 

 

Design of a trial under DREM depends upon the value of  


2
+

2
. If {k} are between a and b, then 

2 
 (b-a)

2
/4. Use this 

upper bound to replace 
2
 will lead to a conservative estimate of 

sample size. (Lan-Pinheiro-Chen JBS, 2015)

0

K2 2

k kk=12 2

to test H : 0 versus H : 0, the statistical test is

Z =  , where  = W σ , and the 
( ) /

rejection region is Z  z .

A

X

N



 


 

 






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From one-sample to two-sample 

2 2

2

Tk Ck

2 2

Tk Ck

 becomes 2 . 

Under fixed effect model, Var[ - ] = 2 (1/N +1/N ).

Under DREM, Var[ - ] = (2 + )(1/N +1/N ).

Tk Ck

Tk Ck

X X

X X

 



 

 

DREM can be applied to comparisons of two proportions: 

Difference, Relative Risk, Odds Ratio. 

 

For survival data analysis using the logrank test, the evaluation of 

power under large sample theory will be slightly anti-conservative.  
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Definition of Consistency:  Examples 

 

1.  [ / 0.5] 0.8,  for all k or for a specific k.

2.   > 0 for all k.

Reference: 

*Ministry of Health,  Labour and Welfare of Japan MHLW . 

Basic principles on global clinical trials,  2007.

*Quan et a

k

k

P  



 

l 2010 Drug Information Journal.

*Liu, Tsou et al (2015) submitted for publication.

 

  

There is NO simple rule to describe all potential cases for 

consistency/inconsistency. 
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Treatment effects and “Belief” --- A review 

K regional treatment effects 1, 2, …,K.  

How do we MODEL OUR BELIEF of treatment effects in K regions? 

Assume all treatment effects are the same: 

1.  Fix effect model, all regional treatment effects are the same. 

1= 2 =…= K =   

2.  Continuous Random Effects Model (CREM). 

Unconditionally, 1, 2, …,K are iid N(, 2). 

Conditionally, they could be different, but deviations come from random 

noise. 
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Example:  Regions 1, 2, 3; observed treatment effects 0.4, 0.7, 0.3.  

Sample sizes are equal in these 3 regions 

 Region 1 Region 2 Region 3 

k 0.4 0.7 0.3 

 

Overall treatment effect estimate: (0.4 + 0.7 + 0.3)/3 = 0.45. 

What are the treatment effects if we repeat this MRCT? 

Reference for CREMs: 

DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical 

Trials 1986; 7:177–88. 
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3. DREM (Discrete Random Effects Model)  

The treatment effects 1, 2, …,K are constants (could be different),  

and a patient’s response X =  +  where  and  are independent, 

  N(0, 2),  is multinomial with P( = k) = wk =Nk /Nj; k = 1,…,K. 
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Example:  

Region 1 2 3 4 

Sample size 400 300 100 200 

Weight = wk 0.4 0.3 0.1 0.2 

Treatment effect 0.3 0.1 0.5 0.2 

Overall treatment effect  = 0.4x0.3+0.3x0.1+0.1x0.5+0.2x0.2=0.24. 

X =  +  where  and  are independent, 

  N(0, 2),  is multinomial with P( = k) = wk =Nk /Nj; k = 1,…,K. 

Let  = wkk = E() and 2 = wk(k-)2 = Var(). 

EX = , Var(X) = 2+2  

                          = within region variation + between region variation. 
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1

1

How to estimate the overall treament effect ?

N = N  ...+N .

Fixed effect model:  = ;  (weigh by sample size)

CREM: Reciprocal of variance, pushes weights to (1/K, 1/K,...,1/K).

DREM:  = 

K

K k
k

k

N

N

N

N



 







1
.

K

k
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Select-the-winner and Drop-the-min 

Select-the-winner 

X1, X2, …, XK iid N(,1).  {X(1) < X(2) <  …< X(K)} 

Max{Xk} = X(K), what is the distribution of X(K)? 

 

Drop-the-min {X(1) < X(2) <  …< X(K)} 

How do we estimate treatment effect  from X(2) ,  …, X(K)? 

Mathematically, these two approaches are the same when K=2. 
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When K = 2. Let X1, X2 be iid N(0,1). 

Define X(1) = min {X1, X2} and X(2) = Max {X1, X2} 

E[X(2)] = 0.5642  (bias); Variance = 1 – 0.5942
2
 = 0.6817. 

In other words, X(2) is a biased estimate of the original mean 0.  

X(2) - 0.5642 becomes unbiased. 

Variance of X(2) = 0.6817 < Var(X1) = Var(X2) =1. 

(2)

(2)

X - bias
Z* =  has a skew normal distribution.

Variance of X

Z*  N(0,1).   (Shun et al 2008 SIM)
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Change of location parameter (Under fixed effect model) 

Let X1, X2 be iid N(,1). 

Define X(1) = min {X1, X2} and X(2) = Max {X1, X2} 

E[X(2)] =  + 0.5642  (bias); Variance = 1 – 0.5942
2
 = 0.6817. 

 

(2)

(2)

X - bias
Z* =  has a skew normal distribution.

Variance of X

Z*  N( ,1).   
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Change of scale parameter  

Let X1, X2 be iid N(,
2
). 

Define X(1) = min {X1, X2} and X(2) = Max {X1, X2} 

E[X(2)] =  + 0.5642  (bias); Variance = 0.6817 
2
. 

That is, Bias = 0.5642, Variance = 0.6817
2
. 

 

For example, if the two regionals have the same means  and the 

sample means X1, X2 are iid N(, 
2
 = .0001). (=1/100) 

Then  X(2) – 0.5642x0.01 = X(2) – 0.005642 is an unbiased estimate 

of  with variance 0.6817 x .0001 = 0.00006817. 
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(2)

(2)

1 2

(2)

X - bias
Z* =  has a skew normal distribution.

Variance of X

Had we started with X , X  iid N( , 1), then the numerator 

(X - bias) provides a unbiased estimate of  and Z*  N( , 1). 

 95% confiden



 

 (2) (2)

ce interval for  : 

X   bias   1.96 Variance of X  .



 
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DREM:  (K=2)  Use observed sample means as treatment effects. 

Let X1  N(1,
2
) and X2  N(2,

2
) be independent. 

Assume 1 <2. 

Define X(1) = min {X1, X2} and X(2) = Max {X1, X2}. 

E[X2 | X(2) = X2] = 2 +  (bias); 

Variance = Var[X2 | X(2) = X2].  

 

We can use (numerical integration or) simulation to find the bias 

and variance.  
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The 95% confidence interval for the mean 2: 

 2 2 (2) 2 X   bias   1.96 Var X |  X  X  .      
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1 2 3

1 2 3 1 2 3

R=3, N = N = N 1300;

=0.095; =0.09; =0.01. Var( ) = Var( )=Var( ).     



 

 

Is there any inconsistency in this specific example? 

Note that all observed treatment effects are positive, and overall 

treatment effect is “significantly larger than 0”. 

 

What if we drop region 3?
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. 

1 2 3

1 2 3 1 2 3

Inconsistency example:  R=3, N =N =N 1300;

=0.095; =0.09; =0.01. Var( ) = Var( )=Var( ).     



  

1. Drop the third region from the MCRT, but 

   estimate treatment effect  (0.095+0.09+0.01)/3 = 0.065. 

2. Drop the third region from the MCRT, and 

   estimate treatment effect  (0.095+0.09)/2 = 0.0925. 

3. Modify approaches 1 and 2.   HOW to modify data analysis for 

dropping the minimum?  
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Treatment = (0.095, 0.09, 0.01), N = (1300, 1300, 1300) 

 

                Fixed        DREM 

v      0.0625   0.0925 

Var    0.0194   0.0192 
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In general, regional sample sizes may be different; and K could be  

any number  2.  

 

Numerical integration is too complex, use simulations to evaluate 

Bias and Variance. 
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Comments on “random sampling” 

Suppose we conduct a clinical trial on treatment T (versus C) with 

2 centers, one in California and another in Wisconsin. 

Patients are NOT random samples from the US population.  How 

could we extrapolate the observed treatment effect to the US 

population?   

From California-Wisconsin to US population, treatment effect 

extrapolation is a medical/biological judgment. 

 

Same for MRCT? 
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What if, after data have been collected, we use bootstrap (re-

sample) to estimate the overall treatment effect? 
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Approximately, we take sample from Region k with probability  

Wk = Nk/N.  DREM is just a smoothed version of the bootstrap. 

 

(  N1                   N2                    N3 )  Sample Space 

 

        R1, 1 , N1          R2,2 ,N2                R3,3,  N3 
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Thank you! 


